A formal logic developed by Alonzo Church and Stephen Kleene to address the computable number problem. In the lambda calculus, is defined as the abstraction operator. Three theorems of lambda calculus are -conversion, -conversion, and -conversion. Lambda-reduction (also called lambda conversion) refers to all three.
Lambda Calculus
See also
Combinator, Combinatory Logic, Computable Number, Lambda ConversionExplore with Wolfram|Alpha
References
Barendregt, H. P. The Lambda Calculus. Amsterdam, Netherlands: North-Holland, 1981.Hankin, C. Lambda Calculi: A Guide for Computer Scientists. Oxford, England: Oxford University Press, 1995.Hindley, J. R. and Seldin, J. P. Introduction to Combinators and lambda-Calculus. Cambridge, England: Cambridge University Press, 1986.Penrose, R. The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics. Oxford, England: Oxford University Press, pp. 66-70, 1989.Révész, G. E. Lambda-Calculus, Combinators, and Functional Programming. Cambridge, England: Cambridge University Press, 1988.Seldin, J. P. and Hindley, J. R. (Eds.). To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. New York: Academic Press, 1980.Referenced on Wolfram|Alpha
Lambda CalculusCite this as:
Weisstein, Eric W. "Lambda Calculus." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LambdaCalculus.html